mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-01-05 21:55:57 +00:00
more args
This commit is contained in:
parent
c0c817c10d
commit
405456a8f0
23
decensor.py
23
decensor.py
@ -6,26 +6,25 @@ import os
|
||||
import matplotlib.pyplot as plt
|
||||
import sys
|
||||
sys.path.append('..')
|
||||
|
||||
from model import Model
|
||||
from poisson_blend import blend
|
||||
from config import *
|
||||
|
||||
IMAGE_SIZE = 128
|
||||
#size of input of local discrimnator. do not change this value.
|
||||
LOCAL_SIZE = 64
|
||||
HOLE_MIN = 24
|
||||
HOLE_MAX = 48
|
||||
BATCH_SIZE = 1
|
||||
|
||||
|
||||
image_folder = 'decensor_input_images/'
|
||||
mask_color = [0, 255, 0]
|
||||
poisson_blending_enabled = False
|
||||
|
||||
def decensor():
|
||||
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
|
||||
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
|
||||
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
|
||||
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
|
||||
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
|
||||
x = tf.placeholder(tf.float32, [args.batch_size, args.image_size, args.image_size, args.input_channel_size])
|
||||
mask = tf.placeholder(tf.float32, [args.batch_size, args.image_size, args.image_size, 1])
|
||||
local_x = tf.placeholder(tf.float32, [args.batch_size, args.local_image_size, args.local_image_size, args.input_channel_size])
|
||||
global_completion = tf.placeholder(tf.float32, [args.batch_size, args.image_size, args.image_size, args.input_channel_size])
|
||||
local_completion = tf.placeholder(tf.float32, [args.batch_size, args.local_image_size, args.local_image_size, args.input_channel_size])
|
||||
is_training = tf.placeholder(tf.bool, [])
|
||||
|
||||
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
|
||||
@ -74,9 +73,9 @@ def get_mask(x_batch):
|
||||
for i in range(BATCH_SIZE):
|
||||
raw = x_batch[i]
|
||||
raw = np.array((raw + 1) * 127.5, dtype=np.uint8)
|
||||
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
|
||||
for x in range(IMAGE_SIZE):
|
||||
for y in range(IMAGE_SIZE):
|
||||
m = np.zeros((args.image_size, args.image_size, 1), dtype=np.uint8)
|
||||
for x in range(args.image_size):
|
||||
for y in range(args.image_size):
|
||||
if np.array_equal(raw[x][y], [0, 255, 0]):
|
||||
m[x, y] = 1
|
||||
mask.append(m)
|
||||
|
Loading…
Reference in New Issue
Block a user