mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-02-05 09:40:13 +00:00
Add files via upload
This commit is contained in:
parent
54760f84ff
commit
05d81eaad4
163
model_mosaic.py
Normal file
163
model_mosaic.py
Normal file
@ -0,0 +1,163 @@
|
|||||||
|
from layer import *
|
||||||
|
|
||||||
|
class Model:
|
||||||
|
def __init__(self, x, mosaic, mask, local_x, global_completion, local_completion, is_training, batch_size):
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.merged = x * (1 - mask) + mosaic * (mask)
|
||||||
|
self.imitation = self.generator(self.merged, is_training)
|
||||||
|
self.completion = self.imitation * mask + x * (1 - mask)
|
||||||
|
self.real = self.discriminator(x, local_x, reuse=False)
|
||||||
|
self.fake = self.discriminator(global_completion, local_completion, reuse=True)
|
||||||
|
self.g_loss = self.calc_g_loss(x, self.completion)
|
||||||
|
self.d_loss = self.calc_d_loss(self.real, self.fake)
|
||||||
|
self.g_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
|
||||||
|
self.d_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
|
||||||
|
|
||||||
|
|
||||||
|
def generator(self, x, is_training):
|
||||||
|
with tf.variable_scope('generator'):
|
||||||
|
with tf.variable_scope('conv1'):
|
||||||
|
x = conv_layer(x, [5, 5, 3, 64], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv2'):
|
||||||
|
x = conv_layer(x, [3, 3, 64, 128], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv3'):
|
||||||
|
x = conv_layer(x, [3, 3, 128, 128], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv4'):
|
||||||
|
x = conv_layer(x, [3, 3, 128, 256], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv5'):
|
||||||
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv6'):
|
||||||
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('dilated1'):
|
||||||
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('dilated2'):
|
||||||
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 4)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('dilated3'):
|
||||||
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 8)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('dilated4'):
|
||||||
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 16)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv7'):
|
||||||
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv8'):
|
||||||
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('deconv1'):
|
||||||
|
x = deconv_layer(x, [4, 4, 128, 256], [self.batch_size, 64, 64, 128], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv9'):
|
||||||
|
x = conv_layer(x, [3, 3, 128, 128], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('deconv2'):
|
||||||
|
x = deconv_layer(x, [4, 4, 64, 128], [self.batch_size, 128, 128, 64], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv10'):
|
||||||
|
x = conv_layer(x, [3, 3, 64, 32], 1)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv11'):
|
||||||
|
x = conv_layer(x, [3, 3, 32, 3], 1)
|
||||||
|
x = tf.nn.tanh(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def discriminator(self, global_x, local_x, reuse):
|
||||||
|
def global_discriminator(x):
|
||||||
|
is_training = tf.constant(True)
|
||||||
|
with tf.variable_scope('global'):
|
||||||
|
with tf.variable_scope('conv1'):
|
||||||
|
x = conv_layer(x, [5, 5, 3, 64], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv2'):
|
||||||
|
x = conv_layer(x, [5, 5, 64, 128], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv3'):
|
||||||
|
x = conv_layer(x, [5, 5, 128, 256], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv4'):
|
||||||
|
x = conv_layer(x, [5, 5, 256, 512], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv5'):
|
||||||
|
x = conv_layer(x, [5, 5, 512, 512], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('fc'):
|
||||||
|
x = flatten_layer(x)
|
||||||
|
x = full_connection_layer(x, 1024)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def local_discriminator(x):
|
||||||
|
is_training = tf.constant(True)
|
||||||
|
with tf.variable_scope('local'):
|
||||||
|
with tf.variable_scope('conv1'):
|
||||||
|
x = conv_layer(x, [5, 5, 3, 64], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv2'):
|
||||||
|
x = conv_layer(x, [5, 5, 64, 128], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv3'):
|
||||||
|
x = conv_layer(x, [5, 5, 128, 256], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('conv4'):
|
||||||
|
x = conv_layer(x, [5, 5, 256, 512], 2)
|
||||||
|
x = batch_normalize(x, is_training)
|
||||||
|
x = tf.nn.relu(x)
|
||||||
|
with tf.variable_scope('fc'):
|
||||||
|
x = flatten_layer(x)
|
||||||
|
x = full_connection_layer(x, 1024)
|
||||||
|
return x
|
||||||
|
|
||||||
|
with tf.variable_scope('discriminator', reuse=reuse):
|
||||||
|
global_output = global_discriminator(global_x)
|
||||||
|
local_output = local_discriminator(local_x)
|
||||||
|
with tf.variable_scope('concatenation'):
|
||||||
|
output = tf.concat((global_output, local_output), 1)
|
||||||
|
output = full_connection_layer(output, 1)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def calc_g_loss(self, x, completion):
|
||||||
|
loss = tf.nn.l2_loss(x - completion)
|
||||||
|
return tf.reduce_mean(loss)
|
||||||
|
|
||||||
|
|
||||||
|
def calc_d_loss(self, real, fake):
|
||||||
|
alpha = 4e-4
|
||||||
|
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real, labels=tf.ones_like(real)))
|
||||||
|
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake, labels=tf.zeros_like(fake)))
|
||||||
|
return tf.add(d_loss_real, d_loss_fake) * alpha
|
||||||
|
|
176
train_mosaic.py
Normal file
176
train_mosaic.py
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
from PIL import Image, ImageFilter
|
||||||
|
import tqdm
|
||||||
|
from model_mosaic import Model
|
||||||
|
import load
|
||||||
|
|
||||||
|
IMAGE_SIZE = 128
|
||||||
|
LOCAL_SIZE = 64
|
||||||
|
HOLE_MIN = 24
|
||||||
|
HOLE_MAX = 48
|
||||||
|
MOSAIC_MIN = 8 #Minimum number of mosaic squares across image
|
||||||
|
MOSAIC_MAX = 32 #Maximum number of mosaic squares across image
|
||||||
|
MOSAIC_GAUSSIAN_P = 0.5 #represent images that have been compressed post-mosaic
|
||||||
|
MOSAIC_GAUSSIAN_MIN = 0.2
|
||||||
|
MOSAIC_GAUSSIAN_MAX = 1.2
|
||||||
|
LEARNING_RATE = 1e-3
|
||||||
|
BATCH_SIZE = 16
|
||||||
|
PRETRAIN_EPOCH = 100
|
||||||
|
|
||||||
|
def train():
|
||||||
|
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
|
||||||
|
mosaic = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
|
||||||
|
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
|
||||||
|
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
|
||||||
|
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
|
||||||
|
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
|
||||||
|
is_training = tf.placeholder(tf.bool, [])
|
||||||
|
|
||||||
|
model = Model(x, mosaic, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
|
||||||
|
sess = tf.Session()
|
||||||
|
global_step = tf.Variable(0, name='global_step', trainable=False)
|
||||||
|
epoch = tf.Variable(0, name='epoch', trainable=False)
|
||||||
|
|
||||||
|
opt = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
|
||||||
|
g_train_op = opt.minimize(model.g_loss, global_step=global_step, var_list=model.g_variables)
|
||||||
|
d_train_op = opt.minimize(model.d_loss, global_step=global_step, var_list=model.d_variables)
|
||||||
|
|
||||||
|
init_op = tf.global_variables_initializer()
|
||||||
|
sess.run(init_op)
|
||||||
|
|
||||||
|
if tf.train.get_checkpoint_state('./models'):
|
||||||
|
saver = tf.train.Saver()
|
||||||
|
saver.restore(sess, './models/latest')
|
||||||
|
|
||||||
|
x_train, x_test = load.load()
|
||||||
|
x_train = np.array([a / 127.5 - 1 for a in x_train])
|
||||||
|
x_test = np.array([a / 127.5 - 1 for a in x_test])
|
||||||
|
|
||||||
|
step_num = int(len(x_train) / BATCH_SIZE)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
sess.run(tf.assign(epoch, tf.add(epoch, 1)))
|
||||||
|
print('epoch: {}'.format(sess.run(epoch)))
|
||||||
|
|
||||||
|
np.random.shuffle(x_train)
|
||||||
|
|
||||||
|
# Completion
|
||||||
|
if sess.run(epoch) <= PRETRAIN_EPOCH:
|
||||||
|
g_loss_value = 0
|
||||||
|
for i in tqdm.tqdm(range(step_num)):
|
||||||
|
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
|
||||||
|
points_batch, mask_batch = get_points()
|
||||||
|
mosaic_batch = get_mosaic(x_batch)
|
||||||
|
|
||||||
|
_, g_loss = sess.run([g_train_op, model.g_loss], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: True})
|
||||||
|
g_loss_value += g_loss
|
||||||
|
|
||||||
|
print('Completion loss: {}'.format(g_loss_value))
|
||||||
|
|
||||||
|
f = open("loss.csv","a+")
|
||||||
|
f.write(str(sess.run(epoch)) + "," + str(g_loss_value) + "," + "0" + "\n")
|
||||||
|
f.close()
|
||||||
|
|
||||||
|
np.random.shuffle(x_test)
|
||||||
|
x_batch = x_test[:BATCH_SIZE]
|
||||||
|
mosaic_batch = get_mosaic(x_batch)
|
||||||
|
merged, completion = sess.run([model.merged, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: False})
|
||||||
|
sample = np.array((merged[0] + 1) * 127.5, dtype=np.uint8)
|
||||||
|
result = Image.fromarray(sample)
|
||||||
|
result.save('./training_output_images/{}_0.png'.format("{0:06d}".format(sess.run(epoch))))
|
||||||
|
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
|
||||||
|
result = Image.fromarray(sample)
|
||||||
|
result.save('./training_output_images/{}_1.png'.format("{0:06d}".format(sess.run(epoch))))
|
||||||
|
|
||||||
|
saver = tf.train.Saver()
|
||||||
|
saver.save(sess, './models/latest', write_meta_graph=False)
|
||||||
|
if sess.run(epoch) == PRETRAIN_EPOCH:
|
||||||
|
saver.save(sess, './models/pretrained', write_meta_graph=False)
|
||||||
|
|
||||||
|
|
||||||
|
# Discrimitation
|
||||||
|
else:
|
||||||
|
g_loss_value = 0
|
||||||
|
d_loss_value = 0
|
||||||
|
for i in tqdm.tqdm(range(step_num)):
|
||||||
|
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
|
||||||
|
points_batch, mask_batch = get_points()
|
||||||
|
mosaic_batch = get_mosaic(x_batch)
|
||||||
|
|
||||||
|
_, g_loss, completion = sess.run([g_train_op, model.g_loss, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: True})
|
||||||
|
g_loss_value += g_loss
|
||||||
|
|
||||||
|
local_x_batch = []
|
||||||
|
local_completion_batch = []
|
||||||
|
for i in range(BATCH_SIZE):
|
||||||
|
x1, y1, x2, y2 = points_batch[i]
|
||||||
|
local_x_batch.append(x_batch[i][y1:y2, x1:x2, :])
|
||||||
|
local_completion_batch.append(completion[i][y1:y2, x1:x2, :])
|
||||||
|
local_x_batch = np.array(local_x_batch)
|
||||||
|
local_completion_batch = np.array(local_completion_batch)
|
||||||
|
|
||||||
|
_, d_loss = sess.run(
|
||||||
|
[d_train_op, model.d_loss],
|
||||||
|
feed_dict={x: x_batch, mask: mask_batch, local_x: local_x_batch, global_completion: completion, local_completion: local_completion_batch, is_training: True})
|
||||||
|
d_loss_value += d_loss
|
||||||
|
|
||||||
|
print('Completion loss: {}'.format(g_loss_value))
|
||||||
|
print('Discriminator loss: {}'.format(d_loss_value))
|
||||||
|
|
||||||
|
np.random.shuffle(x_test)
|
||||||
|
x_batch = x_test[:BATCH_SIZE]
|
||||||
|
mosaic_batch = get_mosaic(x_batch)
|
||||||
|
merged, completion = sess.run([model.merged, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: False})
|
||||||
|
sample = np.array((merged[0] + 1) * 127.5, dtype=np.uint8)
|
||||||
|
result = Image.fromarray(sample)
|
||||||
|
result.save('./training_output_images/{}_0.png'.format("{0:06d}".format(sess.run(epoch))))
|
||||||
|
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
|
||||||
|
result = Image.fromarray(sample)
|
||||||
|
result.save('./training_output_images/{}_1.png'.format("{0:06d}".format(sess.run(epoch))))
|
||||||
|
|
||||||
|
saver = tf.train.Saver()
|
||||||
|
saver.save(sess, './models/latest', write_meta_graph=False)
|
||||||
|
|
||||||
|
|
||||||
|
def get_points():
|
||||||
|
points = []
|
||||||
|
mask = []
|
||||||
|
for i in range(BATCH_SIZE):
|
||||||
|
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2)
|
||||||
|
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE
|
||||||
|
points.append([x1, y1, x2, y2])
|
||||||
|
|
||||||
|
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2)
|
||||||
|
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w)
|
||||||
|
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h)
|
||||||
|
p2 = p1 + w
|
||||||
|
q2 = q1 + h
|
||||||
|
|
||||||
|
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
|
||||||
|
m[q1:q2 + 1, p1:p2 + 1] = 1
|
||||||
|
mask.append(m)
|
||||||
|
|
||||||
|
return np.array(points), np.array(mask)
|
||||||
|
|
||||||
|
|
||||||
|
def get_mosaic(x_batch):
|
||||||
|
mosaic = []
|
||||||
|
for i in range(BATCH_SIZE):
|
||||||
|
im = np.array((x_batch[i] + 1) * 127.5, dtype=np.uint8)
|
||||||
|
im = Image.fromarray(im)
|
||||||
|
size = np.random.randint(MOSAIC_MIN, MOSAIC_MAX)
|
||||||
|
im = im.resize((size,size),Image.LANCZOS)
|
||||||
|
im = im.resize((IMAGE_SIZE,IMAGE_SIZE),Image.NEAREST)
|
||||||
|
if np.random.rand() < MOSAIC_GAUSSIAN_P:
|
||||||
|
im = im.filter(ImageFilter.GaussianBlur(np.random.uniform(MOSAIC_GAUSSIAN_MIN, MOSAIC_GAUSSIAN_MAX)))
|
||||||
|
|
||||||
|
mosaic.append(np.array(im))
|
||||||
|
|
||||||
|
mosaic = np.array([a / 127.5 - 1 for a in mosaic])
|
||||||
|
return mosaic
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
train()
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user