2018-02-26 15:41:19 +00:00
import argparse
def str2bool ( v ) :
if v . lower ( ) in ( ' yes ' , ' true ' , ' t ' , ' y ' , ' 1 ' , True ) :
return True
elif v . lower ( ) in ( ' no ' , ' false ' , ' f ' , ' n ' , ' 0 ' , False ) :
return False
else :
raise argparse . ArgumentTypeError ( ' Boolean value expected. ' )
parser = argparse . ArgumentParser ( description = ' ' )
#Image setting
parser . add_argument ( ' --input_size ' , dest = ' input_size ' , default = 128 , help = ' input image size ' )
parser . add_argument ( ' --local_input_size ' , dest = ' local_input_size ' , default = 64 , help = ' local input image size ' )
parser . add_argument ( ' --input_channel_size ' , dest = ' input_channel_size ' , default = 3 , help = ' input image channel ' )
parser . add_argument ( ' --min_mask_size ' , dest = ' min_mask_size ' , default = 24 , help = ' minimum mask size ' )
parser . add_argument ( ' --max_mask_size ' , dest = ' max_mask_size ' , default = 48 , help = ' maximum mask size ' )
2018-02-28 04:10:44 +00:00
parser . add_argument ( ' --rotate_chance ' , dest = ' rotate_chance ' , default = 0.7 , help = ' chance the mask will be randomly rotated ' )
2018-02-26 15:55:48 +00:00
parser . add_argument ( ' --train_mosaic ' , dest = ' train_mosaic ' , default = False , help = ' train neural network to decensor mosaics ' )
2018-02-26 15:41:19 +00:00
# parser.add_argument('--input_dim', dest='input_dim', default=100, help='input z size')
# #Training Settings
2018-02-26 15:55:48 +00:00
parser . add_argument ( ' --continue_training ' , dest = ' continue_training ' , default = False , type = str2bool , help = ' flag to continue training ' )
2018-02-28 04:10:44 +00:00
parser . add_argument ( ' --training_samples_path ' , dest = ' training_samples_path ' , default = ' ./training_samples/ ' , help = ' samples images generated during training path ' )
parser . add_argument ( ' --batch_size ' , dest = ' batch_size ' , default = 16 , help = ' batch size ' )
2018-02-26 15:41:19 +00:00
# parser.add_argument('--data', dest='data', default='../ambientGAN_TF/data', help='cats image train path')
# parser.add_argument('--train_step', dest='train_step', default=400, help='total number of train_step')
# parser.add_argument('--Tc', dest='Tc', default=100, help='Tc to train Completion Network')
# parser.add_argument('--Td', dest='Td', default=1, help='Td to train Discriminator Network')
parser . add_argument ( ' --learning_rate ' , dest = ' learning_rate ' , default = 0.001 , help = ' learning rate of the optimizer ' )
# parser.add_argument('--momentum', dest='momentum', default=0.5, help='momentum of the optimizer')
# #I set alpha to 1 to give more weights to the discriminator loss
# parser.add_argument('--alpha', dest='alpha', default=1.0, help='alpha')
# parser.add_argument('--margin', dest='margin', default=5, help='margin')
# #Test image
# parser.add_argument('--img_path', dest='img_path', default='', help='test image path')
# #Extra folders setting
# parser.add_argument('--checkpoints_path', dest='checkpoints_path', default='./checkpoints/', help='saved model checkpoint path')
# parser.add_argument('--graph_path', dest='graph_path', default='./graphs/', help='tensorboard graph')
# parser.add_argument('--images_path', dest='images_path', default='./images/', help='result images path')
2018-02-27 16:26:54 +00:00
parser . add_argument ( ' --testing_output_path ' , dest = ' testing_output_path ' , default = ' ./testing_output/ ' , help = ' output images generated from running test.py path ' )
2018-02-28 04:10:44 +00:00
parser . add_argument ( ' --decensor_input_path ' , dest = ' decensor_input_path ' , default = ' ./decensor_input/ ' , help = ' input images to be decensored by decensor.py path ' )
parser . add_argument ( ' --decensor_output_path ' , dest = ' decensor_output_path ' , default = ' ./decensor_output/ ' , help = ' output images generated from running decensor.py path ' )
2018-02-26 15:41:19 +00:00
args = parser . parse_args ( )