DeepCreamPy/test.py

96 lines
3.0 KiB
Python
Raw Normal View History

2018-02-11 03:19:48 +00:00
import numpy as np
import tensorflow as tf
from PIL import Image
import tqdm
import os
import matplotlib.pyplot as plt
import sys
sys.path.append('..')
from model import Model
IMAGE_SIZE = 128
LOCAL_SIZE = 64
HOLE_MIN = 24
HOLE_MAX = 48
BATCH_SIZE = 16
test_npy = './lfw.npy'
def test():
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
is_training = tf.placeholder(tf.bool, [])
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op)
saver = tf.train.Saver()
saver.restore(sess, './models/latest')
x_test = np.load(test_npy)
np.random.shuffle(x_test)
x_test = np.array([a / 127.5 - 1 for a in x_test])
step_num = int(len(x_test) / BATCH_SIZE)
cnt = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
_, mask_batch = get_points()
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
for i in range(BATCH_SIZE):
cnt += 1
raw = x_batch[i]
raw = np.array((raw + 1) * 127.5, dtype=np.uint8)
masked = raw * (1 - mask_batch[i]) + np.ones_like(raw) * mask_batch[i] * 255
img = completion[i]
img = np.array((img + 1) * 127.5, dtype=np.uint8)
dst = './testing_output_images/{}.jpg'.format("{0:06d}".format(cnt))
output_image([['Input', masked], ['Output', img], ['Ground Truth', raw]], dst)
def get_points():
points = []
mask = []
for i in range(BATCH_SIZE):
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2)
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE
points.append([x1, y1, x2, y2])
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2)
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w)
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h)
p2 = p1 + w
q2 = q1 + h
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
m[q1:q2 + 1, p1:p2 + 1] = 1
mask.append(m)
return np.array(points), np.array(mask)
def output_image(images, dst):
fig = plt.figure()
for i, image in enumerate(images):
text, img = image
fig.add_subplot(1, 3, i + 1)
plt.imshow(img)
plt.tick_params(labelbottom='off')
plt.tick_params(labelleft='off')
plt.gca().get_xaxis().set_ticks_position('none')
plt.gca().get_yaxis().set_ticks_position('none')
plt.xlabel(text)
plt.savefig(dst)
plt.close()
if __name__ == '__main__':
test()