DeepCreamPy/decensor.py

331 lines
15 KiB
Python
Raw Normal View History

2019-08-07 08:04:56 +00:00
#!/usr/bin/env python3
try:
import numpy as np
from PIL import Image
2019-10-09 19:46:57 +00:00
import tensorflow as tf
2019-08-07 08:04:56 +00:00
2019-10-09 05:20:28 +00:00
import os, logging, sys
2019-08-07 08:04:56 +00:00
from copy import deepcopy
import config
import file
from model import InpaintNN
from libs.utils import *
# for QThread
from PySide2 import QtCore
2019-10-09 05:20:28 +00:00
2019-08-07 08:04:56 +00:00
except ImportError as e:
print("Error when importing libraries: ", e)
2019-09-29 21:38:21 +00:00
print("Some Python libraries are missing. You can install all required libraries by running in the command line 'pip install -r requirements.txt' ")
2019-08-07 08:04:56 +00:00
exit(1)
2019-10-09 05:20:28 +00:00
# #signals to the ui to print out
# class EmittingStream(QtCore.QObject):
# textWritten = QtCore.pyqtSignal(str)
# def write(self, text):
# self.textWritten.emit(str(text))
'''
print text later on other label telling status, informations ,...
custom_print -> signals."methodname".emit( ... ) later
changing GUI on other thread(not MainWindow) is not allowed
'''
class Decensor(QtCore.QThread):
2019-10-09 05:20:28 +00:00
def __init__(self, text_edit = None, text_cursor = None, ui_mode = None):
super().__init__()
args = config.get_args()
self.is_mosaic = args.is_mosaic
self.variations = args.variations
self.mask_color = [args.mask_color_red/255.0, args.mask_color_green/255.0, args.mask_color_blue/255.0]
self.decensor_input_path = args.decensor_input_path
self.decensor_input_original_path = args.decensor_input_original_path
self.decensor_output_path = args.decensor_output_path
self.signals = None # Singals class will be given by progressWindow
2019-10-09 05:20:28 +00:00
if ui_mode is not None:
self.ui_mode = ui_mode
else:
self.ui_mode = args.ui_mode
2019-08-07 08:04:56 +00:00
if not os.path.exists(self.decensor_output_path):
os.makedirs(self.decensor_output_path)
2019-08-07 08:04:56 +00:00
2019-10-09 05:20:28 +00:00
if self.ui_mode:
self.text_edit = text_edit
self.text_cursor = text_cursor
self.ui_mode = True
def run(self):
self.decensor_all_images_in_folder()
def stop(self):
# in case of stopping decensor, terminate not to run if self while MainWindow is closed
self.terminate()
def find_mask(self, colored):
self.signals.update_progress_LABEL.emit("find_mask()", "finding mask...")
2019-08-07 08:04:56 +00:00
mask = np.ones(colored.shape, np.uint8)
i, j = np.where(np.all(colored[0] == self.mask_color, axis=-1))
mask[0, i, j] = 0
return mask
def load_model(self):
self.signals.update_progress_LABEL.emit("load_model()", "loading model...")
2019-10-03 04:57:42 +00:00
self.model = InpaintNN(bar_model_name = "./models/bar/Train_775000.meta",
bar_checkpoint_name = "./models/bar/",
mosaic_model_name = "./models/mosaic/Train_290000.meta",
mosaic_checkpoint_name = "./models/mosaic/",
is_mosaic=self.is_mosaic)
2019-08-07 08:04:56 +00:00
def decensor_all_images_in_folder(self):
#load model once at beginning and reuse same model
2019-10-03 04:57:42 +00:00
self.load_model()
input_color_dir = self.decensor_input_path
2019-09-29 21:38:21 +00:00
file_names = os.listdir(input_color_dir)
input_dir = self.decensor_input_path
output_dir = self.decensor_output_path
2019-09-29 21:38:21 +00:00
# Change False to True before release --> file.check_file(input_dir, output_dir, True)
self.signals.update_progress_LABEL.emit("file.check_file()", "checking image files and directory...")
2019-09-29 21:38:21 +00:00
file_names, self.files_removed = file.check_file(input_dir, output_dir, False)
2019-08-07 08:04:56 +00:00
self.signals.total_ProgressBar_update_MAX_VALUE.emit("set total progress bar MaxValue : "+str(len(file_names)),len(file_names))
2019-08-07 08:04:56 +00:00
#convert all images into np arrays and put them in a list
for n, file_name in enumerate(file_names, start = 1):
self.signals.total_ProgressBar_update_VALUE.emit("decensoring {} / {}".format(n, len(file_names)), n)
# singal progress bar value == masks decensored on image ,
# e.g) sample image : 17
self.signals.singal_ProgressBar_update_VALUE.emit("reset value", 0) # set to 0 for every image at start
self.signals.update_progress_LABEL.emit("for-loop, \"for file_name in file_names:\"","decensoring : "+str(file_name))
2019-09-29 21:38:21 +00:00
color_file_path = os.path.join(input_color_dir, file_name)
color_basename, color_ext = os.path.splitext(file_name)
2019-08-07 08:04:56 +00:00
if os.path.isfile(color_file_path) and color_ext.casefold() == ".png":
2019-10-09 05:20:28 +00:00
self.custom_print("--------------------------------------------------------------------------")
self.custom_print("Decensoring the image {}".format(color_file_path))
2019-08-07 08:04:56 +00:00
try :
colored_img = Image.open(color_file_path)
except:
2019-10-09 05:20:28 +00:00
self.custom_print("Cannot identify image file (" +str(color_file_path)+")")
2019-08-07 08:04:56 +00:00
self.files_removed.append((color_file_path,3))
# incase of abnormal file format change (ex : text.txt -> text.png)
continue
2019-08-07 08:04:56 +00:00
#if we are doing a mosaic decensor
if self.is_mosaic:
#get the original file that hasn't been colored
ori_dir = self.decensor_input_original_path
2019-09-29 21:38:21 +00:00
test_file_names = os.listdir(ori_dir)
2019-08-07 08:04:56 +00:00
#since the original image might not be a png, test multiple file formats
valid_formats = {".png", ".jpg", ".jpeg"}
2019-09-29 21:38:21 +00:00
for test_file_name in test_file_names:
test_basename, test_ext = os.path.splitext(test_file_name)
if (test_basename == color_basename) and (test_ext.casefold() in valid_formats):
2019-08-07 08:04:56 +00:00
ori_file_path = os.path.join(ori_dir, test_file_name)
ori_img = Image.open(ori_file_path)
# colored_img.show()
2019-09-29 21:38:21 +00:00
self.decensor_image_variations(ori_img, colored_img, file_name)
2019-08-07 08:04:56 +00:00
break
else: #for...else, i.e if the loop finished without encountering break
2019-10-09 05:20:28 +00:00
self.custom_print("Corresponding original, uncolored image not found in {}".format(color_file_path))
self.custom_print("Check if it exists and is in the PNG or JPG format.")
2019-09-29 21:38:21 +00:00
#if we are doing a bar decensor
2019-08-07 08:04:56 +00:00
else:
2019-09-29 21:38:21 +00:00
self.decensor_image_variations(colored_img, colored_img, file_name)
2019-08-07 08:04:56 +00:00
else:
2019-10-09 05:20:28 +00:00
self.custom_print("--------------------------------------------------------------------------")
self.custom_print("Image can't be found: "+str(color_file_path))
self.custom_print("--------------------------------------------------------------------------")
2019-09-29 21:38:21 +00:00
if self.files_removed is not None:
2019-08-07 08:04:56 +00:00
file.error_messages(None, self.files_removed)
2019-10-09 05:20:28 +00:00
self.custom_print("\nDecensoring complete!")
2019-10-09 19:46:57 +00:00
#unload model to prevent memory issues
tf.reset_default_graph()
2019-09-29 21:38:21 +00:00
def decensor_image_variations(self, ori, colored, file_name=None):
for i in range(self.variations):
self.decensor_image_variation(ori, colored, i, file_name)
#create different decensors of the same image by flipping the input image
def apply_variant(self, image, variant_number):
if variant_number == 0:
return image
elif variant_number == 1:
return image.transpose(Image.FLIP_LEFT_RIGHT)
elif variant_number == 2:
return image.transpose(Image.FLIP_TOP_BOTTOM)
else:
return image.transpose(Image.FLIP_LEFT_RIGHT).transpose(Image.FLIP_TOP_BOTTOM)
2019-08-07 08:04:56 +00:00
#decensors one image at a time
#TODO: decensor all cropped parts of the same image in a batch (then i need input for colored an array of those images and make additional changes)
2019-09-29 21:38:21 +00:00
def decensor_image_variation(self, ori, colored, variant_number, file_name):
ori = self.apply_variant(ori, variant_number)
colored = self.apply_variant(colored, variant_number)
2019-08-07 08:04:56 +00:00
width, height = ori.size
#save the alpha channel if the image has an alpha channel
has_alpha = False
if (ori.mode == "RGBA"):
has_alpha = True
alpha_channel = np.asarray(ori)[:,:,3]
alpha_channel = np.expand_dims(alpha_channel, axis =-1)
ori = ori.convert('RGB')
ori_array = image_to_array(ori)
ori_array = np.expand_dims(ori_array, axis = 0)
if self.is_mosaic:
#if mosaic decensor, mask is empty
# mask = np.ones(ori_array.shape, np.uint8)
2019-10-09 05:20:28 +00:00
# self.custom_print(mask.shape)
2019-08-07 08:04:56 +00:00
colored = colored.convert('RGB')
color_array = image_to_array(colored)
color_array = np.expand_dims(color_array, axis = 0)
mask = self.find_mask(color_array)
2019-08-07 08:04:56 +00:00
mask_reshaped = mask[0,:,:,:] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
# mask_img.show()
else:
mask = self.find_mask(ori_array)
2019-08-07 08:04:56 +00:00
#colored image is only used for finding the regions
regions = find_regions(colored.convert('RGB'), [v*255 for v in self.mask_color])
2019-10-09 05:20:28 +00:00
self.custom_print("Found {region_count} censored regions in this image!".format(region_count = len(regions)))
2019-08-07 08:04:56 +00:00
if len(regions) == 0 and not self.is_mosaic:
2019-10-09 05:20:28 +00:00
self.custom_print("No green regions detected! Make sure you're using exactly the right color.")
2019-08-07 08:04:56 +00:00
return
self.signals.singal_ProgressBar_update_MAX_VALUE.emit("found {} masked regions".format(len(regions)), len(regions))
2019-08-07 08:04:56 +00:00
output_img_array = ori_array[0].copy()
for region_counter, region in enumerate(regions, 1):
self.signals.update_progress_LABEL.emit("for-loop, \"for region_counter, region in enumerate(regions, 1):\"","decensoring censor {}/{}".format(region_counter,len(regions)))
2019-08-07 08:04:56 +00:00
bounding_box = expand_bounding(ori, region, expand_factor=1.5)
crop_img = ori.crop(bounding_box)
# crop_img.show()
#convert mask back to image
mask_reshaped = mask[0,:,:,:] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
#resize the cropped images
crop_img = crop_img.resize((256, 256))
crop_img_array = image_to_array(crop_img)
#resize the mask images
mask_img = mask_img.crop(bounding_box)
mask_img = mask_img.resize((256, 256))
# mask_img.show()
#convert mask_img back to array
2019-08-07 08:04:56 +00:00
mask_array = image_to_array(mask_img)
#the mask has been upscaled so there will be values not equal to 0 or 1
# mask_array[mask_array > 0] = 1
# crop_img_array[..., :-1][mask_array==0] = (0,0,0)
2019-08-07 08:04:56 +00:00
if not self.is_mosaic:
a, b = np.where(np.all(mask_array == 0, axis = -1))
2019-10-09 05:20:28 +00:00
# self.custom_print(a,b)
# self.custom_print(crop_img_array[a,b])
# self.custom_print(crop_img_array[a,b,0])
# self.custom_print(crop_img_array.shape)
# self.custom_print(type(crop_img_array[0,0]))
2019-08-07 08:04:56 +00:00
crop_img_array[a,b,:] = 0.
2019-09-29 21:38:21 +00:00
# temp = Image.fromarray((crop_img_array * 255.0).astype('uint8'))
2019-08-07 08:04:56 +00:00
# temp.show()
crop_img_array = np.expand_dims(crop_img_array, axis = 0)
mask_array = np.expand_dims(mask_array, axis = 0)
2019-10-09 05:20:28 +00:00
# self.custom_print(np.amax(crop_img_array))
# self.custom_print(np.amax(mask_array))
# self.custom_print(np.amax(masked))
2019-10-09 05:20:28 +00:00
# self.custom_print(np.amin(crop_img_array))
# self.custom_print(np.amin(mask_array))
# self.custom_print(np.amin(masked))
2019-08-07 08:04:56 +00:00
2019-10-09 05:20:28 +00:00
# self.custom_print(mask_array)
2019-08-07 08:04:56 +00:00
crop_img_array = crop_img_array * 2.0 - 1
# mask_array = mask_array / 255.0
# Run predictions for this batch of images
pred_img_array = self.model.predict(crop_img_array, crop_img_array, mask_array)
2019-08-07 08:04:56 +00:00
pred_img_array = np.squeeze(pred_img_array, axis = 0)
pred_img_array = (255.0 * ((pred_img_array + 1.0) / 2.0)).astype(np.uint8)
#scale prediction image back to original size
bounding_width = bounding_box[2]-bounding_box[0]
bounding_height = bounding_box[3]-bounding_box[1]
#convert np array to image
2019-10-09 05:20:28 +00:00
# self.custom_print(bounding_width,bounding_height)
# self.custom_print(pred_img_array.shape)
2019-08-07 08:04:56 +00:00
pred_img = Image.fromarray(pred_img_array.astype('uint8'))
# pred_img.show()
pred_img = pred_img.resize((bounding_width, bounding_height), resample = Image.BICUBIC)
# pred_img.show()
pred_img_array = image_to_array(pred_img)
2019-10-09 05:20:28 +00:00
# self.custom_print(pred_img_array.shape)
2019-08-07 08:04:56 +00:00
pred_img_array = np.expand_dims(pred_img_array, axis = 0)
# copy the decensored regions into the output image
for i in range(len(ori_array)):
for col in range(bounding_width):
for row in range(bounding_height):
bounding_width_index = col + bounding_box[0]
bounding_height_index = row + bounding_box[1]
if (bounding_width_index, bounding_height_index) in region:
output_img_array[bounding_height_index][bounding_width_index] = pred_img_array[i,:,:,:][row][col]
self.signals.singal_ProgressBar_update_VALUE.emit("{} out of {} regions decensored.".format(region_counter, len(regions)), region_counter)
2019-10-09 05:20:28 +00:00
self.custom_print("{region_counter} out of {region_count} regions decensored.".format(region_counter=region_counter, region_count=len(regions)))
2019-08-07 08:04:56 +00:00
output_img_array = output_img_array * 255.0
#restore the alpha channel if the image had one
if has_alpha:
output_img_array = np.concatenate((output_img_array, alpha_channel), axis = 2)
output_img = Image.fromarray(output_img_array.astype('uint8'))
2019-09-29 21:38:21 +00:00
output_img = self.apply_variant(output_img, variant_number)
2019-08-07 08:04:56 +00:00
self.signals.update_progress_LABEL.emit("finished", "decensoring finished, saving as file...")
2019-08-07 08:04:56 +00:00
if file_name != None:
#save the decensored image
2019-09-29 21:38:21 +00:00
base_name, ext = os.path.splitext(file_name)
file_name = base_name + " " + str(variant_number) + ext
save_path = os.path.join(self.decensor_output_path, file_name)
2019-08-07 08:04:56 +00:00
output_img.save(save_path)
2019-10-09 05:20:28 +00:00
self.custom_print("Decensored image saved to {save_path}!".format(save_path=save_path))
2019-08-07 08:04:56 +00:00
return
else:
2019-10-09 05:20:28 +00:00
self.custom_print("Decensored image. Returning it.")
2019-08-07 08:04:56 +00:00
return output_img
2019-10-09 05:20:28 +00:00
def custom_print(self, text):
if self.ui_mode:
from PySide2.QtGui import QTextCursor
self.text_cursor.insertText(text)
self.text_cursor.insertText("\n")
self.text_edit.moveCursor(QTextCursor.End)
else:
print(text)
2019-08-07 08:04:56 +00:00
if __name__ == '__main__':
decensor = Decensor()
decensor.decensor_all_images_in_folder()
# equivalent to decensor.start() (running as QtThread)