/* * Copyright (c) 2018-2019 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "creport_threads.hpp" #include "creport_modules.hpp" namespace sts::creport { namespace { /* Convenience definitions. */ constexpr u32 LibnxThreadVarMagic = 0x21545624; /* !TV$ */ constexpr u32 DumpedThreadInfoMagic = 0x32495444; /* DTI2 */ /* Types. */ template struct StackFrame { T fp; T lr; }; /* Helpers. */ template void ReadStackTrace(size_t *out_trace_size, u64 *out_trace, size_t max_out_trace_size, Handle debug_handle, u64 fp) { size_t trace_size = 0; u64 cur_fp = fp; for (size_t i = 0; i < max_out_trace_size; i++) { /* Validate the current frame. */ if (cur_fp == 0 || (cur_fp % sizeof(T) != 0)) { break; } /* Read a new frame. */ StackFrame cur_frame; if (R_FAILED(svcReadDebugProcessMemory(&cur_frame, debug_handle, cur_fp, sizeof(cur_frame)))) { break; } /* Advance to the next frame. */ out_trace[trace_size++] = cur_frame.lr; cur_fp = cur_frame.fp; } *out_trace_size = trace_size; } } void ThreadList::SaveToFile(FILE *f_report) { fprintf(f_report, "Number of Threads: %02zu\n", this->thread_count); for (size_t i = 0; i < this->thread_count; i++) { fprintf(f_report, "Threads[%02zu]:\n", i); this->threads[i].SaveToFile(f_report); } } void ThreadInfo::SaveToFile(FILE *f_report) { fprintf(f_report, " Thread ID: %016lx\n", this->thread_id); if (std::strcmp(this->name, "") != 0) { fprintf(f_report, " Thread Name: %s\n", this->name); } if (this->stack_top != 0) { fprintf(f_report, " Stack Region: %016lx-%016lx\n", this->stack_bottom, this->stack_top); } fprintf(f_report, " Registers:\n"); { for (unsigned int i = 0; i <= 28; i++) { fprintf(f_report, " X[%02u]: %s\n", i, this->module_list->GetFormattedAddressString(this->context.cpu_gprs[i].x)); } fprintf(f_report, " FP: %s\n", this->module_list->GetFormattedAddressString(this->context.fp)); fprintf(f_report, " LR: %s\n", this->module_list->GetFormattedAddressString(this->context.lr)); fprintf(f_report, " SP: %s\n", this->module_list->GetFormattedAddressString(this->context.sp)); fprintf(f_report, " PC: %s\n", this->module_list->GetFormattedAddressString(this->context.pc.x)); } if (this->stack_trace_size != 0) { fprintf(f_report, " Stack Trace:\n"); for (size_t i = 0; i < this->stack_trace_size; i++) { fprintf(f_report, " ReturnAddress[%02zu]: %s\n", i, this->module_list->GetFormattedAddressString(this->stack_trace[i])); } } if (this->stack_dump_base != 0) { fprintf(f_report, " Stack Dump: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f\n"); for (size_t i = 0; i < 0x10; i++) { const size_t ofs = i * 0x10; fprintf(f_report, " %012lx %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", this->stack_dump_base + ofs, this->stack_dump[ofs + 0], this->stack_dump[ofs + 1], this->stack_dump[ofs + 2], this->stack_dump[ofs + 3], this->stack_dump[ofs + 4], this->stack_dump[ofs + 5], this->stack_dump[ofs + 6], this->stack_dump[ofs + 7], this->stack_dump[ofs + 8], this->stack_dump[ofs + 9], this->stack_dump[ofs + 10], this->stack_dump[ofs + 11], this->stack_dump[ofs + 12], this->stack_dump[ofs + 13], this->stack_dump[ofs + 14], this->stack_dump[ofs + 15]); } } if (this->tls_address != 0) { fprintf(f_report, " TLS Address: %016lx\n", this->tls_address); fprintf(f_report, " TLS Dump: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f\n"); for (size_t i = 0; i < 0x10; i++) { const size_t ofs = i * 0x10; fprintf(f_report, " %012lx %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", this->tls_address + ofs, this->tls[ofs + 0], this->tls[ofs + 1], this->tls[ofs + 2], this->tls[ofs + 3], this->tls[ofs + 4], this->tls[ofs + 5], this->tls[ofs + 6], this->tls[ofs + 7], this->tls[ofs + 8], this->tls[ofs + 9], this->tls[ofs + 10], this->tls[ofs + 11], this->tls[ofs + 12], this->tls[ofs + 13], this->tls[ofs + 14], this->tls[ofs + 15]); } } } bool ThreadInfo::ReadFromProcess(Handle debug_handle, std::map &tls_map, u64 thread_id, bool is_64_bit) { /* Set thread id. */ this->thread_id = thread_id; /* Verify that the thread is running or waiting. */ { u64 _; u32 _thread_state; if (R_FAILED(svcGetDebugThreadParam(&_, &_thread_state, debug_handle, this->thread_id, DebugThreadParam_State))) { return false; } const svc::ThreadState thread_state = static_cast(_thread_state); if (thread_state != svc::ThreadState::Waiting && thread_state != svc::ThreadState::Running) { return false; } } /* Get the thread context. */ if (R_FAILED(svcGetDebugThreadContext(&this->context, debug_handle, this->thread_id, svc::ThreadContextFlag_All))) { return false; } /* In aarch32 mode svcGetDebugThreadParam does not set the LR, FP, and SP registers correctly. */ if (!is_64_bit) { this->context.fp = this->context.cpu_gprs[11].x; this->context.sp = this->context.cpu_gprs[13].x; this->context.lr = this->context.cpu_gprs[14].x; } /* Read TLS, if present. */ /* TODO: struct definitions for nnSdk's ThreadType/TLS Layout? */ if (tls_map.find(thread_id) != tls_map.end()) { this->tls_address = tls_map[thread_id]; u8 thread_tls[0x200]; if (R_SUCCEEDED(svcReadDebugProcessMemory(thread_tls, debug_handle, this->tls_address, sizeof(thread_tls)))) { std::memcpy(this->tls, thread_tls, sizeof(this->tls)); /* Try to detect libnx threads, and skip name parsing then. */ if (*(reinterpret_cast(&thread_tls[0x1E0])) != LibnxThreadVarMagic) { u8 thread_type[0x1D0]; const u64 thread_type_addr = *(reinterpret_cast(&thread_tls[0x1F8])); if (R_SUCCEEDED(svcReadDebugProcessMemory(thread_type, debug_handle, thread_type_addr, sizeof(thread_type)))) { /* Check thread name is actually at thread name. */ static_assert(0x1A8 - 0x188 == NameLengthMax, "NameLengthMax definition!"); if (*(reinterpret_cast(&thread_type[0x1A8])) == thread_type_addr + 0x188) { std::memcpy(this->name, thread_type + 0x188, NameLengthMax); } } } } } /* Parse stack extents and dump stack. */ this->TryGetStackInfo(debug_handle); /* Dump stack trace. */ if (is_64_bit) { ReadStackTrace(&this->stack_trace_size, this->stack_trace, StackTraceSizeMax, debug_handle, this->context.fp); } else { ReadStackTrace(&this->stack_trace_size, this->stack_trace, StackTraceSizeMax, debug_handle, this->context.fp); } return true; } void ThreadInfo::TryGetStackInfo(Handle debug_handle) { /* Query stack region. */ MemoryInfo mi; u32 pi; if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, this->context.sp))) { return; } /* Check if sp points into the stack. */ if (mi.type != MemType_MappedMemory) { /* It's possible that sp is below the stack... */ if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, mi.addr + mi.size)) || mi.type != MemType_MappedMemory) { return; } } /* Save stack extents. */ this->stack_bottom = mi.addr; this->stack_top = mi.addr + mi.size; /* We always want to dump 0x100 of stack, starting from the lowest 0x10-byte aligned address below the stack pointer. */ /* Note: if the stack pointer is below the stack bottom, we will start dumping from the stack bottom. */ this->stack_dump_base = std::min(std::max(this->context.sp & ~0xFul, this->stack_bottom), this->stack_top - sizeof(this->stack_dump)); /* Try to read stack. */ if (R_FAILED(svcReadDebugProcessMemory(this->stack_dump, debug_handle, this->stack_dump_base, sizeof(this->stack_dump)))) { this->stack_dump_base = 0; } } void ThreadInfo::DumpBinary(FILE *f_bin) { /* Dump id and context. */ fwrite(&this->thread_id, sizeof(this->thread_id), 1, f_bin); fwrite(&this->context, sizeof(this->context), 1, f_bin); /* Dump TLS info and name. */ fwrite(&this->tls_address, sizeof(this->tls_address), 1, f_bin); fwrite(&this->tls, sizeof(this->tls), 1, f_bin); fwrite(&this->name, sizeof(this->name), 1, f_bin); /* Dump stack extents and stack dump. */ fwrite(&this->stack_bottom, sizeof(this->stack_bottom), 1, f_bin); fwrite(&this->stack_top, sizeof(this->stack_top), 1, f_bin); fwrite(&this->stack_dump_base, sizeof(this->stack_dump_base), 1, f_bin); fwrite(&this->stack_dump, sizeof(this->stack_dump), 1, f_bin); /* Dump stack trace. */ { const u64 sts = this->stack_trace_size; fwrite(&sts, sizeof(sts), 1, f_bin); } fwrite(this->stack_trace, sizeof(this->stack_trace[0]), this->stack_trace_size, f_bin); } void ThreadList::DumpBinary(FILE *f_bin, u64 crashed_thread_id) { const u32 magic = DumpedThreadInfoMagic; const u32 count = this->thread_count; fwrite(&magic, sizeof(magic), 1, f_bin); fwrite(&count, sizeof(count), 1, f_bin); fwrite(&crashed_thread_id, sizeof(crashed_thread_id), 1, f_bin); for (size_t i = 0; i < this->thread_count; i++) { this->threads[i].DumpBinary(f_bin); } } void ThreadList::ReadFromProcess(Handle debug_handle, std::map &tls_map, bool is_64_bit) { this->thread_count = 0; /* Get thread list. */ u32 num_threads; u64 thread_ids[ThreadCountMax]; { if (R_FAILED(svcGetThreadList(&num_threads, thread_ids, ThreadCountMax, debug_handle))) { return; } num_threads = std::min(size_t(num_threads), ThreadCountMax); } /* Parse thread infos. */ for (size_t i = 0; i < num_threads; i++) { if (this->threads[this->thread_count].ReadFromProcess(debug_handle, tls_map, thread_ids[i], is_64_bit)) { this->thread_count++; } } } }